
WEIGHT: 53 kg
Breast: Small
One HOUR:200$
NIGHT: +90$
Services: Massage prostate, Oral, Golden shower (out), Striptease, Cunnilingus
Received: 6 July Accepted: 21 April We present here a tectonic-geodynamic model for the generation and flow of partially molten rocks and for magmatism during the Variscan orogenic evolution from the Silurian to the late Carboniferous based on a synthesis of geological data from the French Massif Central.
Eclogite facies metamorphism of mafic and ultramafic rocks records the subduction of the Gondwana hyperextended margin. Part of these eclogites are forming boudins-enclaves in felsic HP granulite facies migmatites partly retrogressed into amphibolite facies attesting for continental subduction followed by thermal relaxation and decompression.
We propose that HP partial melting has triggered mechanical decoupling of the partially molten continental rocks from the subducting slab. This would have allowed buoyancy-driven exhumation and entrainment of pieces of oceanic lithosphere and subcontinental mantle. Geochronological data of the eclogite-bearing HP migmatites points to diachronous emplacement of distinct nappes from middle to late Devonian.
The emplacement of laccoliths rooted into strike-slip transcurrent shear zones capped by low-angle detachments from c. We attribute these features to horizontal growth of the Variscan belt and formation of an orogenic plateau by gravity-driven lateral flow of the partially molten orogenic root. The diversity of the magmatic rocks points to various crustal sources with modest, but systematic mantle-derived input.
In the eastern French Massif Central, the southward decrease in age of the mantle- and crustal-derived plutonic rocks from c. Late Carboniferous destruction of the Variscan belt is dominantly achieved by gravitational collapse accommodated by the activation of low-angle detachments and the exhumation-crystallization of the partially molten orogenic root forming crustal-scale LP migmatite domes from c.